Creatine & Blood Pressure

Hey Guys,

My dad is a regular T-man. At 65 years old I got him to start using creatine and lifting heavy (he was in pretty good shape to begin with so it wasn’t going to kill him).

Anyway, he went in to get his blood pressure checked, it was high. He went off the creatine, went back a week later, got it checked, it was fine. He went back on creatine and it was high!

I’ve cycled creatine and never seen a noticeable change in blood pressure. I’ve read a lot about creatine and I don’t remember reading anything about this either.

Thoughts?

Come on anybody???

All I can think of is that creatine can cause an increase in water retention. Now, I thought this was primarily intracellular water, but a slight change in water balance could affect someone who is predisposed to developing hypertension.

Is he using a creatine cocktail, or just plain powder? If it’s just the powder what is he mixing it with? I would venture to guess that some other variable is involved here besides the creatine.

He’s got the “pharmaceutical grade” pure creatine (no “transporters”) and isn’t mixing it with anything besides water. He’s taking 4-5 grams/day.

You may be right that the high blood pressure is being caused by something else. Since he’s new to supplementation he probably eyes the creatine more suspiciously.

Again, I just wanted to see if anyone had heard of a correlation between creatine and high blood pressure. I’ll try and get some more info as to before and after BP up here.

Creatine alone should not cause an increase in blood pressure; there are a host of other factors that ought to be considered. Here’s proof from Pubmed that it’s safe:

Mihic S, MacDonald JR, McKenzie S, Tarnopolsky MA. Acute creatine loading increases fat-free mass, but does not affect blood pressure, plasma creatinine, or CK activity in men and women. Med Sci Sports Exerc 2000 Feb;32(2):291-6.

Creatine monohydrate (CrM) administration may enhance high intensity exercise performance and increase body mass, yet few studies have examined for potential adverse effects, and no studies have directly considered potential gender differences. PURPOSE: The purpose of this study was to examine the effect of acute creatine supplementation upon total and lean mass and to determine potential side effects in both men and women. METHODS: The effect of acute CrM (20 g x d(-1) x 5 d) administration upon systolic, diastolic, and mean BP, plasma creatinine, plasma CK activity, and body composition was examined in 15 men and 15 women in a randomized, double-blind experiment. Additionally, ischemic isometric handgrip strength was measured before and after CrM or placebo (PL). RESULTS: CrM did not affect blood pressure, plasma creatinine, estimated creatinine clearance, plasma CK activity, or handgrip strength (P > 0.05). In contrast, CrM significantly increased fat-free mass (FFM) and total body mass (P < 0.05) as compared with PL, with no changes in body fat. The observed mass changes were greater for men versus women. CONCLUSIONS: These findings suggest that acute CrM administration does not affect blood pressure, renal function, or plasma CK activity, but increases FFM. The effect of CrM upon FFM may be greater in men as compared with that in women.

Schilling BK, Stone MH, Utter A, Kearney JT, Johnson M, Coglianese R, Smith L, O’Bryant HS, Fry AC, Starks M, Keith R, Stone ME. Creatine supplementation and health variables: a retrospective study. Med Sci Sports Exerc. 2001 Feb;33(2):183-8.

PURPOSE: Long-term safety of creatine supplementation has been questioned. This retrospective study was performed to examine markers related to health, the incidence of reported side effects and the perceived training benefits in athletes supplementing with creatine monohydrate. METHODS: Twenty-six athletes (18 M and 8 F, 24.7 +/- 9.2 y; 82.4 +/- 20.0 kg; 176.5 +/- 8.8 cm) from various sports were used as subjects. Blood was collected between 7:00 and 8:30 a.m. after a 12-h fast. Standard clinical examination was performed for CBC and 27 blood chemistries. Testosterone, cortisol, and growth hormone were analyzed using an ELISA. Subjects answered a questionnaire on dietary habits, creatine supplementation, medical history, training history, and perceived effects of supplementation. Body mass was measured using a medical scale, body composition was estimated using skinfolds, and resting heart rate and blood pressure were recorded. Subjects were grouped by supplementation length or no use: Gp1 (control) = no use (N = 7; 3 F, 4 M); Gp2 = 0.8-1.0 yr (N = 9; 2 F, 7 M); and Gp3 = 1(+) (N = 10; 3 F, 7 M). RESULTS: Creatine supplementation ranged from 0.8–4 yr. Mean loading dose for Gp2 and Gp3 was 13.7 +/- 10.0 and the maintenance dose was 9.7 +/- 5.7 g.d(-)1. Group differences were analyzed using one-way ANOVA. CONCLUSIONS: Expected gender differences were observed. Of the comparisons made among supplementation groups, only two differences for creatinine and total protein (P < 0.05) were noted. All group means fell within normal clinical ranges. There were no differences in the reported incidence of muscle injury, cramps, or other side effects. These data suggest that long-term creatine supplementation does not result in adverse health effects.

Volek JS, Mazzetti SA, Farquhar WB, Barnes BR, Gomez AL, Kraemer WJ. Physiological responses to short-term exercise in the heat after creatine loading. Med Sci Sports Exerc 2001 Jul;33(7):1101-8.

PURPOSE: This investigation was designed to examine the influence of creatine (Cr) supplementation on acute cardiovascular, renal, temperature, and fluid-regulatory hormonal responses to exercise for 35 min in the heat. METHODS: Twenty healthy men were matched and then randomly assigned to consume 0.3 g.kg(-1) Cr monohydrate (N = 10) or placebo (N = 10) for 7 d in a double-blind fashion. Before and after supplementation, both groups cycled for 30 min at 60-70% VO2(peak) immediately followed by three 10-s sprints in an environmental chamber at 37 degrees C and 80% relative humidity. RESULTS: Body mass was significantly increased (0.75 kg) in Cr subjects. Heart rate, blood pressure, and sweat rate responses to exercise were not significantly different between groups. There were no differences in rectal temperature responses in either group. Sodium, potassium, and creatinine excretion rates obtained from 24-h and exercise urine collection periods were not significantly altered in either group. Serum creatinine was elevated in the Cr group but within normal ranges. There were significant exercise-induced increases in cortisol, aldosterone, renin, angiotensin I and II, atrial peptide, and arginine vasopressin. The aldosterone response was slightly greater in the Cr (263%) compared with placebo (224%) group. Peak power was greater in the Cr group during all three 10-s sprints after supplementation and unchanged in the placebo group. There were no reports of adverse symptoms, including muscle cramping during supplementation or exercise. CONCLUSION: Cr supplementation augments repeated sprint cycle performance in the heat without altering thermoregulatory responses.

Thank you!

Very Helpful.

After some more blood pressure checks and experimentation creatine was ruled out as the cause. (Interestingly, the cause was probably being stressed from driving through heavy traffic on the way in to the doctor’s office.)

Just another example of how quick people are to point the finger at sports supplements.